Exercise 2.2

The following diagram is a representation of 20 atoms of a fictitious element, which we will call nevadium (Nv). The red spheres are ²⁹³Nv, and the blue spheres are ²⁹⁵Nv. (a) Assuming that this sample is a statistically representative sample of the element, calculate the percent abundance of each element. (b) If the mass of ²⁹³Nv is 293.15 amu and that of ²⁹⁵Nv is 295.15 amu, what is the atomic weight of Nv? [Section 2.4]

Solution

(a) There are 12 red balls, and there are 8 blue balls.

Percent Abundance of
$$^{293}\mathrm{Nv:}\quad \frac{12}{20}\times 100\%=60\%$$

Percent Abundance of
295
Nv: $\frac{8}{20} \times 100\% = 40\%$

(b) The atomic weight is calculated by multiplying the fractional abundance with the respective mass of each isotope and adding them together.

Atomic Weight =
$$\sum$$
 (fractional abundance)(mass)
= $\left(\frac{12}{20}\right)$ (293.15 amu) + $\left(\frac{8}{20}\right)$ (295.15 amu)
= 175.89 amu + 118.06 amu
= 293.95 amu