## Exercise 2.2

The following diagram is a representation of 20 atoms of a fictitious element, which we will call nevadium ( Nv ). The red spheres are ${ }^{293} \mathrm{Nv}$, and the blue spheres are ${ }^{295} \mathrm{Nv}$. (a) Assuming that this sample is a statistically representative sample of the element, calculate the percent abundance of each element. (b) If the mass of ${ }^{293} \mathrm{Nv}$ is 293.15 amu and that of ${ }^{295} \mathrm{Nv}$ is 295.15 amu, what is the atomic weight of Nv? [Section 2.4]


## Solution

(a) There are 12 red balls, and there are 8 blue balls.

$$
\begin{array}{ll}
\text { Percent Abundance of }{ }^{293} \mathrm{Nv}: & \frac{12}{20} \times 100 \%=60 \% \\
\text { Percent Abundance of }{ }^{295} \mathrm{Nv}: & \frac{8}{20} \times 100 \%=40 \%
\end{array}
$$

(b) The atomic weight is calculated by multiplying the fractional abundance with the respective mass of each isotope and adding them together.

$$
\begin{aligned}
\text { Atomic Weight } & =\sum(\text { fractional abundance })(\text { mass }) \\
& =\left(\frac{12}{20}\right)(293.15 \mathrm{amu})+\left(\frac{8}{20}\right)(295.15 \mathrm{amu}) \\
& =175.89 \mathrm{amu}+118.06 \mathrm{amu} \\
& =293.95 \mathrm{amu}
\end{aligned}
$$

